

TRADITIONAL METHODS AND NEW APPROACHES FOR PROFICIENCY TESTING OF WASTEWATER SAMPLING

Magda Cotman*, Janez Vrtovšek, Albin Pintar

Laboratory for Environmental Sciences and Engineering, National Institute of Chemistry (NIC), Ljubljana, Slovenia *🖂 maqda. cotman@ki.si, 🖀 +38614760238, 🗎 +38614760300

INTRODUCTION

With the support of the Environment Agency of the Republic of Slovenia, the Laboratory for Environmental Sciences and Engineering at the National Institute of Chemistry will organize a collaborative field trial on wastewater sampling. Since sampling errors were recognized as an important factor affecting the quality of an analytical result, the needs for consistency of data arising from the European Water Framework Directive 2000/60/EC rendered enhancement of metrological knowledge in this step of the measurement chain more significant. The sampling method used depends largely on the types of analyses to be run, and the nature of the waste stream being sampled. The aim of this study will be to evaluate several sampling procedures, including standardized, to determine the variability induced by sampling operations in subsequent analytical processes. Experimental determination of sampling uncertainty contribution is very costly and time intensive, especially for a single laboratory experiment. The most convenient and robust way to estimate sampling uncertainty is thus participation in proficiency testing organized in agreement with international guides (Nordtest Report TR 604).

SAMPLING

Wastewater sampling targets:

> Investigations related to specific control limits (industrial wastewater).

> Supervision of inlet to wastewater treatment plants for optimization of the wastewater treatment process.

> Surveillance of the outlet from an industry or wastewater treatment plant related to allowable limits

> Supervision of treatment processes

PROCEDURES

ISO 5667-10 Water quality -Sampling Part 10: Guidance on sampling of wastewaters

It describes manual sampling automatic sampling.

The principle of using automatic equipment is that the sampler takes a series of discrete samples at fixed intervals that are held in individual containers. In practical cases the same design is used when carrving out 24-hour studies to identify peak loads.

Automatic wastewater sampling equipment

Monitoring parameters:

field parameters: pH, oxygen, temperature and conductivity parameters to be analyzed in a laboratory, also called non-field parameters: chemical oxygen demand (COD), suspended solids and

Sulphate in wastewater

Number of results	31
Number of excluded results	0
Mean	261 mg/L
Median	258 mg/L
Standard deviation	19 mg/L
Robust standard deviation	14 mg/L
Result range	229.14 to 325.16 mg/L
Number of results reporting MU	21
Extended MU (k=2) range	0.8 to 74 mg/L

Decision chain and uncertainty

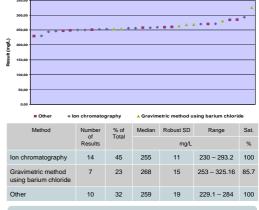
Wastewater sampling procedures:

Samples being collected must be representative of the waste stream being tested.

> Samples shall be collected in uncontaminated containers and preserved properly

Samples should be of sufficient volume for the subsequent analyses. Samples should be stored in a manner which does not alter the properties

of the sample prior to chain of custody transfer. Samples should be properly and completely identified by marking them


with proper information. Sample lines should be as short as possible with the smallest practical

diameter to facilitate purging, reduce lag time, and give adequate consideration to maximum transport velocity.

The standard gives guidance on the selection of the sampling point to assure representative sample.

Wastewater treatment plant near Ljubljana

Results of sulphate measurements in wastewater

SUMMARY

anions

This trial will be the first national attempt to improve knowledge of the effect in wastewater sampling undertaken as part of regulatory monitoring. It is planned that over twenty sampling teams will take part in the trial in a sampling site on municipal wastewater treatment plant near Ljubljana. Flow-proportional 24-h composite samples are required, particularly where the monitored discharge is intermittent or variable; such samples are preferred over time composite samples.

The sampling site is appropriate for collecting samples as long as it is representative of the discharge and has no bypass capabilities. The monitoring parameters selected will be field parameters (pH, dissolved oxygen, temperature and conductivity) and chemical oxygen demand, suspended solids and anions

Assigned value

Extended MU of assigned value (k=2)

Metrological traceability of analytical results of participants will be verified with the use of reference materials.

REFERENCES

- Grøn, C., Hansen, J. B., Magnusson, B., Nordbotten, A., Krysell, M., Andersen, J., Lund, U., Uncertainty from sampling - a Nordtest handbook for sampling planners on sampling quality assurance and uncertainty estimation Nordtest Report TR 604.
- Nordrest Report IN 604. M.P. Strub, B. Lepot, A. Morin, *Trends in Analytical Chemistry*, 2009, 28, No. 2, 245-26S SIST ISO 5667-10 (1992) Water quality Sampling Part IO: Guidance on sampling of waste waters. International standard Organization-Commun. Geneve

Overwiew chart of wastewater sampling

Assigned value is established with reference measurements performed at the Laboratory for Environmental Sciences and Engineering (NIC) using ion chromatography

263 mg/L

15.0 ma/L